

Chamber Quantification and Evaluation of Systolic Function

Hector I. Michelena, FACC, FASE
Associate Professor of Medicine
ACC Latin America
October, 2016

Disclosures

No relevant financial disclosures

Overview

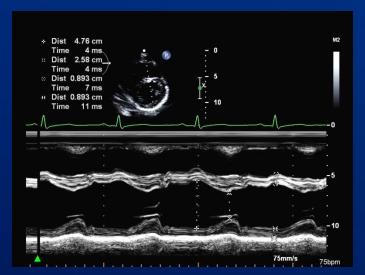
- Assessment of LV size
- Assessment of LV function
- Assessment of LV mass and geometry

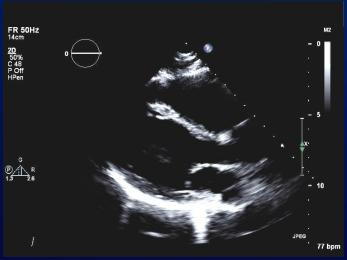
GUIDELINES AND STANDARDS

Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society An Update from the European Association of Cardiovascular Imaging

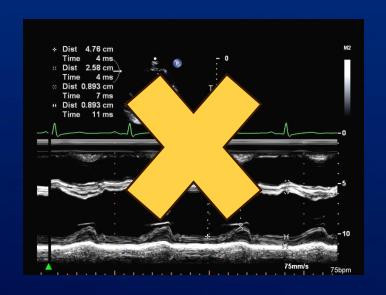
Roberto M. Lang, MD, FASE, FESC, Luigi P. Badano, MD, PhD, FESC, Victor Mor-Avi, PhD, FASE,
Jonathan Afilalo, MD, MSc, Anderson Armstrong, MD, MSc, Laura Ernande, MD, PhD,
Frank A. Flachskampf, MD, FESC, Elyse Foster, MD, FASE, Steven A. Goldstein, MD,
Frank A. Flachskampf, MD, FESC, Elyse Foster, MD, PhD, FESC, Denisa Muraru, MD, PhD,
Tatiana Kuznetsova, MD, PhD, Patrizio Lancellotti, MD, PhD, FESC, Denisa Muraru, MD, FASE, Kirk T. Spencer, MD,
Michael H. Picard, MD, FASE, Ernst R. Rietzschel, MD, PhD, FESC, Chicago, Illinois; Padua, Italy; Montreal, Quebec
Michael H. Picard, MD, and Jens-Uwe Voigt, MD, PhD, FESC, Chicago, Illinois; San Francisco, California;
FASE, Wendy Tsang, MD, and Jens-Uwe Voigt, MD, PhD, FESC, Chicago, Illinois; San Francisco, California;
FASE, Wendy Tsang, MD, and Jens-Uwe Voigt, Maryland; Créteil, France; Uppsala, Sweden; San Francisco
Maryland; Créteil, France; Uppsala, Sweden; San Massachusetts
and Toronto, Ontario, Canada; Baltimore, Maryland; Créteil, France; Uppsala, Sweden; Boston, Massachusetts
Washington, District of Columbia; Leuven, Liège, and Ghent, Belgium; Boston, Massachusetts

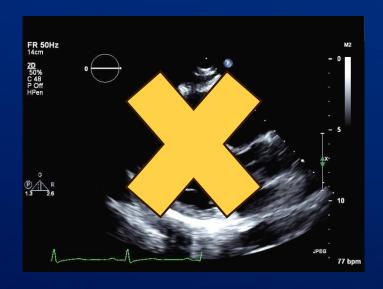
Abnormal Aortic Valve With Reduced Systolic Opening								
Aortic Regurgitation								
Mi	tral Regurgitation							
Recommendations	CO	R LOE	References					
ICD therapy is recommended for primary prevention of SCD in selected patients wi at least 40 d post-MI with LVEF <35% and NYHA class II or III symptoms on chrowth who are expected to live >1 y*		А	355, 593					
CRT is indicated for patients who have LVEF ≤35%, sinus rhythm, LBBB with a QR ≥150 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT	S I	A (NYHA class III/IV B (NYHA class II)	38, 78, 116, 594 595, 596					
ICD therapy is recommended for primary prevention of SCD in selected patients wi at least 40 d post-MI with LVEF <30% and NYHA class I symptoms while receiving who are expected to live >1 y*		В	362, 597, 598					
CRT can be useful for patients who have LVEF ≤35%, sinus rhythm, a non-LBBB pa QRS ≥150 ms, and NYHA class III/ambulatory class IV symptoms on GDMT	attern with IIa	A A	78, 116, 594, 596					
CRT can be useful for patients who have LVEF ≤35%, sinus rhythm, LBBB with a 0 149 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT	RS 120 to	В	78, 116, 594–596, 599					
CRT can be useful in patients with AF and LVEF ≤35% on GDMT if a) the patient re ventricular pacing or otherwise meets CRT criteria and b) AV nodal ablation or ra allows near 100% ventricular pacing with CRT		В	600–605					
CRT can be useful for patients on GDMT who have LVEF ≤35% and are undergoing replacement device implantation with anticipated ventricular pacing (>40%)	new or Ila	C	155, 602, 606, 607					
An ICD is of uncertain benefit to prolong meaningful survival in patients with a high nonsudden death such as frequent hospitalizations, frailty, or severe comorbidit		В	608–611					
CRT may be considered for patients who have LVEF ≤35%, sinus rhythm, a non-LE with a QRS duration of 120 to 149 ms, and NYHA class III/ambulatory class IV or		В	596, 612					
CRT may be considered for patients who have LVEF ≤35%, sinus rhythm, a non-LE with QRS ≥150 ms, and NYHA class II symptoms on GDMT	BBB pattern III	В	595, 596					
MCRT may be considered for patients who have LVEF ≤30%, ischemic etiology of HF rhythm, LBBB with QRS ≥150 ms, and NYHA class I symptoms on GDMT	, sinus	C	595, 596					
CRT is not recommended for patients with NYHA class I or II symptoms and non-LE pattern with QRS <150 ms	BBB III: No E	Benefit B	595, 596, 612					
CRT is not indicated for patients whose comorbidities and/or frailty limit survival to	<1 y III: No E	Benefit C	38					



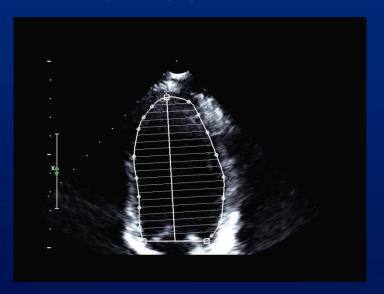

Assessment of LV Size

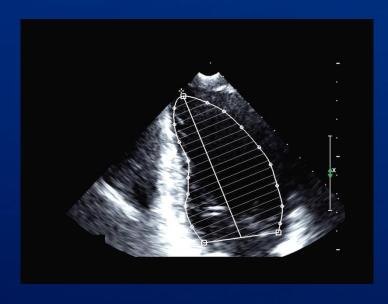
LV Dimensions


- Measure in PLAX view.
- Measure at or immediately below mitral valve leaflet tips.
- 2D images are preferred to avoid oblique sections of the ventricle
- Representative of LV size only in normally shaped ventricles



LV Volumes



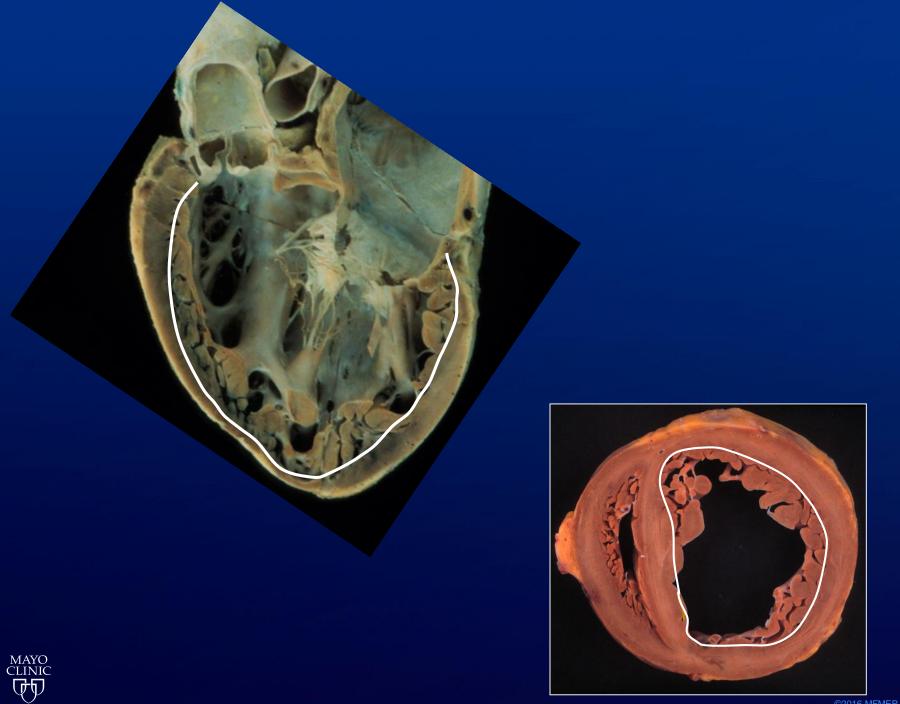


- Calculation of LV volumes from linear dimensions is <u>no</u> <u>longer recommended.</u>
- May be inaccurate due to assumption of a fixed geometric LV shape which does not apply in a variety of pathologies.

LV Volumes

- Should routinely be assessed by using the biplane method of disks summation technique.
- Should be measured from apical 4- and 2-chamber views.
- Avoiding foreshortening and aim to maximize LV areas

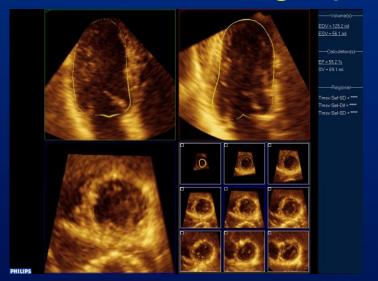
Tips

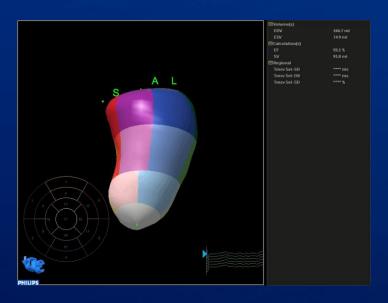

Avoiding foreshortening

 LV lengths should be comparable between views

 Exclude trabeculations and papillary muscle

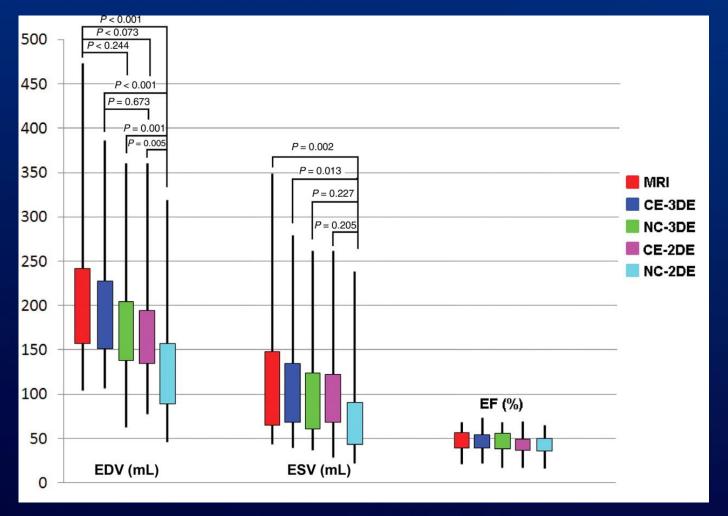
Contrast Echocardiography





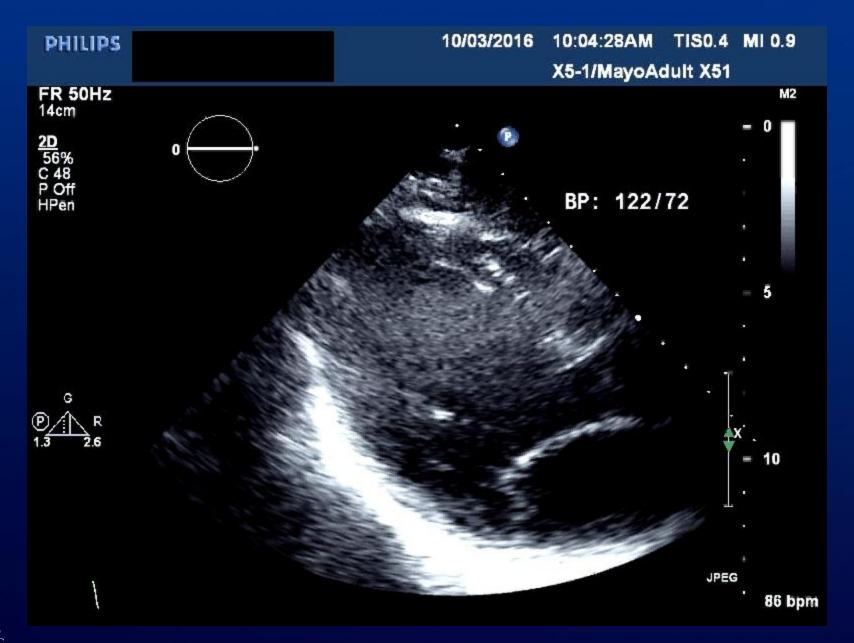
- Should be used when two or more contiguous LV segments are poorly visualized in apical views.
- Contrast-enhanced images may provide larger volumes than unenhanced images.

3D Echocardiography



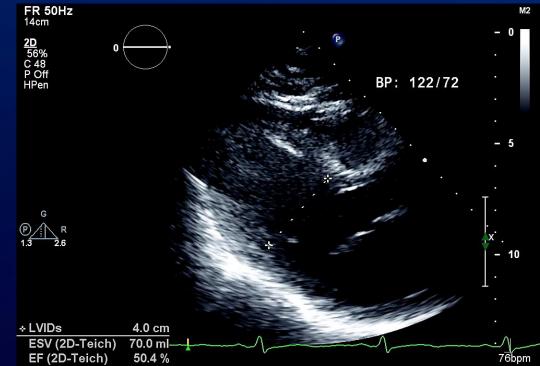
- More accurate and reproducible
- No geometrical assumptions
- 3D LV volume measurement is recommended when feasible depending on image quality.

Assessment of LV Volumes by Echo

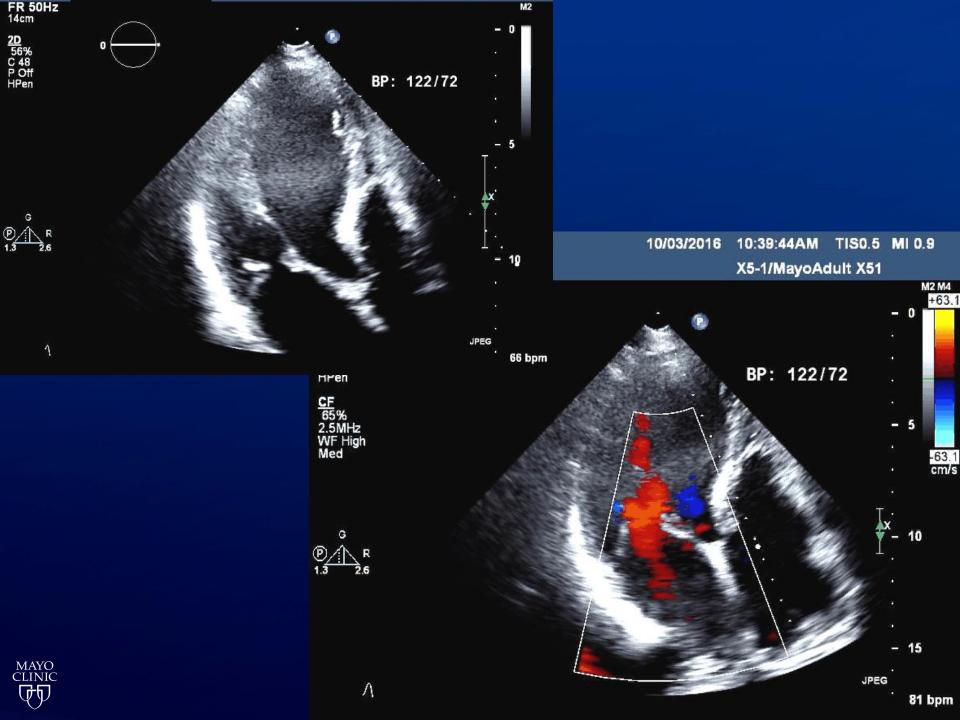

Jenkins C et al. Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur Heart J. 2009;30:98-106.

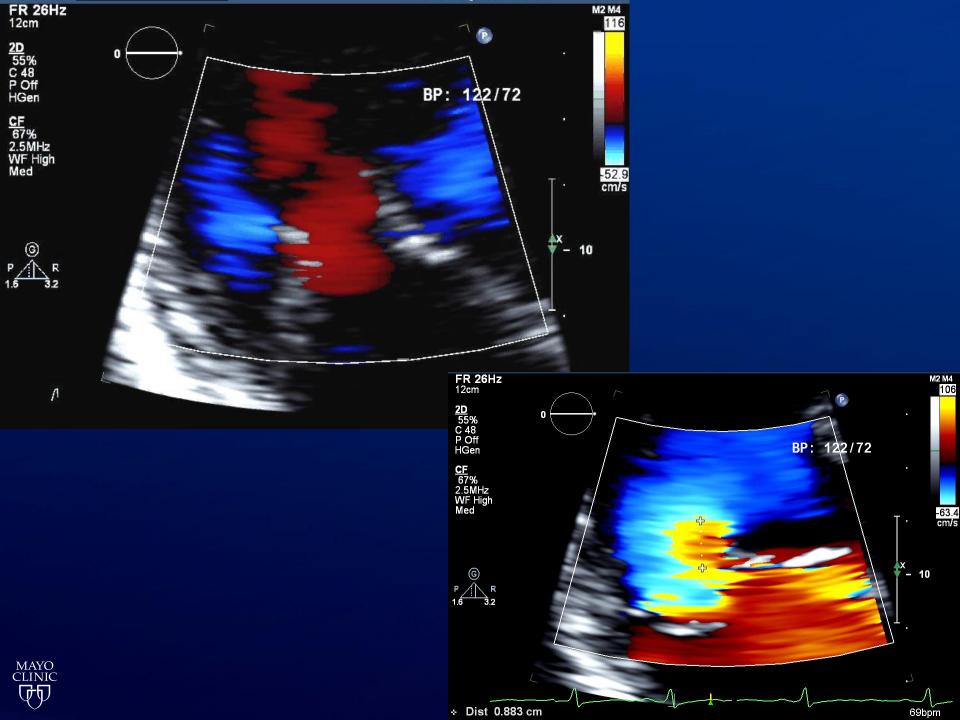
Interpretation of LV size

	Male			Female				
	Normal range	Mildly abnormal	Moderately abnormal	Severely abnormal	Normal range	Mildly abnormal	Moderately abnormal	Severely abnormal
LV dimension								
LV diastolic diameter (cm)	4.2-5.8	5.9-6.3	6.4–6.8	>6.8	3.8-5.2	5.3-5.6	5.7–6.1	>6.1
LV diastolic diameter/BSA (cm/m²)	2.2-3.0	3.1-3.3	3.4-3.6	>3.6	2.3-3.1	3.2-3.4	3.5-3.7	>3.7
LV systolic diameter (cm)	2.5-4.0	4.1-4.3	4.4-4.5	>4.5	2.2-3.5	3.6-3.8	3.9-4.1	>4.1
LV systolic diameter/BSA (cm/m²)	1.3-2.1	2.2-2.3	2.4-2.5	>2.5	1.3-2.1	2.2-2.3	2.4-2.6	>2.6
LV volume								
LV diastolic volume (mL)	62-150	151–174	175–200	>200	46–106	107–120	121–130	>130
LV diastolic volume/BSA (mL/m²)	34–74	75–89	90–100	>100	29-61	62-70	71–80	>80
LV systolic volume (mL)	21-61	62-73	74–85	>85	14-42	43-55	56-67	>67
LV systolic volume/BSA (mL/m²)	11–31	32–38	39–45	>45	8–24	25–32	33-40	>40



Lang RM et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015;28:1-39.





	Male			Female				
	Normal range	Mildly abnormal	Moderately abnormal	Severely abnormal	Normal range	Mildly abnormal	Moderately abnormal	Severely abnomal
LV dimension								
LV diastolic diameter (cm)	4.2-5.8	5.9-6.3	6.4-6.8	>6.8	3.8-5.2	5.3-5.6	5.7-6.1	>6.1
LV diastolic diameter/BSA (cm/m²)	2.2-3.0	3.1-3.3	3.4-3.6	>3.6	2.3-3.1	3.2-3.4	3.5-3.7	>3.7
LV systolic diameter (cm)	2.5-4.0	4.1-4.3	4.4-4.5	>4.5	2.2-3.5	3.6-3.8	3.9-4.1	>4.1
LV systolic diameter/BSA (cm/m²)	1.3-2.1	2.2-2.3	2.4-2.5	>2.5	1.3-2.1	2.2-2.3	2.4-2.6	>2.6
LV volume								
LV diastolic volume (mL)	62-150	151-174	175–200	>200	46-106	107-120	121-130	>130
LV diastolic volume/BSA (mL/m²)	34-74	75–89	90–100	>100	29-61	62-70	71–80	>80
LV systolic volume (mL)	21–61	62-73	74–85	>85	14-42	43-55	56-67	>67
LV systolic volume/BSA (mL/m²)	11–31	32–38	39–45	>45	8–24	25–32	33–40	>40

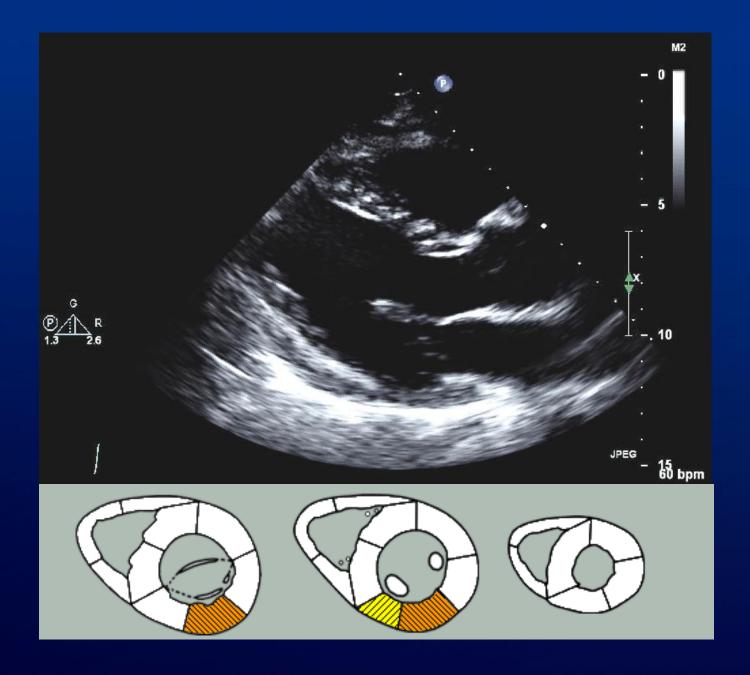
Rvol MR 105 cc/beat
2D LVEDD 54 mm
2D LVESD 40 mm
Volumetric LVEF 54%
LA index 75 cc/m2
Biplane LV EDD Vol 225 cc
Biplane LV EDD Vol/index 137 cc/m2

Assessment of LV Function

Methods

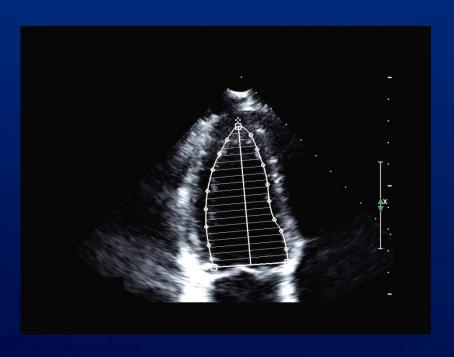
- Fractional Shortening
- Ejection Fraction
- Stroke Volume
- Global Longitudinal Strain

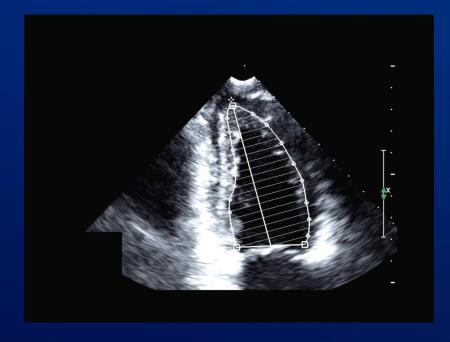
Regional Wall Motion Analysis



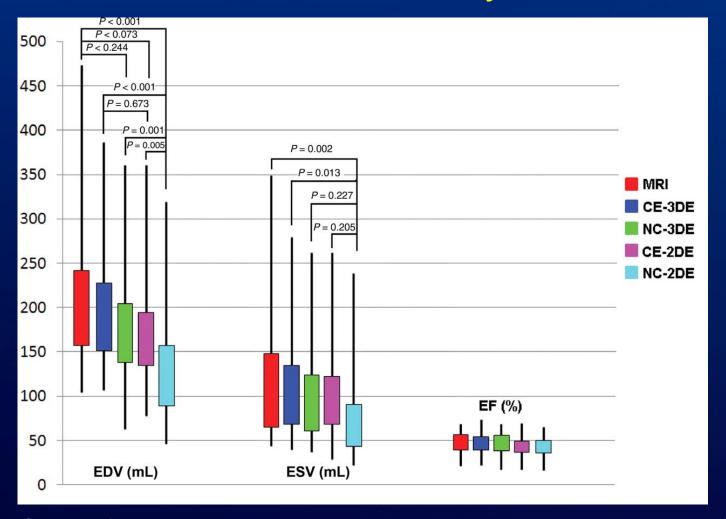
LVEF: Modified Quinones Method

$$LVEF_{calc} = \frac{LVEDD^2 - LVESD^2}{LVEDD^2}$$


- >0 Akinetic
- >-5 Dyskinetic
- >-10 Aneurysmal



LVEF: Modified Simpson's Biplane



$$LVEF = \frac{LVEDV - LVESV}{LVEDV} \times 100$$

Assessment of LV Volumes by Echo

Jenkins C et al. Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur Heart J. 2009;30:98-106.

LV Ejection Fraction

	Male	Female			
Normal	52 – 72 %	54 – 74 %			
Mildly Abnormal	41 – 51 %	41 – 51 %			
Moderately Abnormal	30 – 40 %	30 – 40 %			
Severely Abnormal	< 30 %	< 30 %			

Assessment of LV Mass and Geometry

Question

 64 year old white female presents with a 16 year history of hypertension, she initially was managed with diuretics alone but has been managed with two drug therapy with ACE inhibitor and diuretics for the last 7 years.

Question

 She describes NYHA class II DOE, no orthopnea or PND. Denies chest pain or other cardiac symptoms.

Exam

• 165cm 82 Kg

• BP 137/81 HR 67

- Lungs Clear
- CV soft S1 paradoxically split S2, 1/6 holosystolic blowing murmur at apex
- No Edema

Se: 3001 lm: 3001 06-May-2011 09:47:26 MAN CLIN

Question

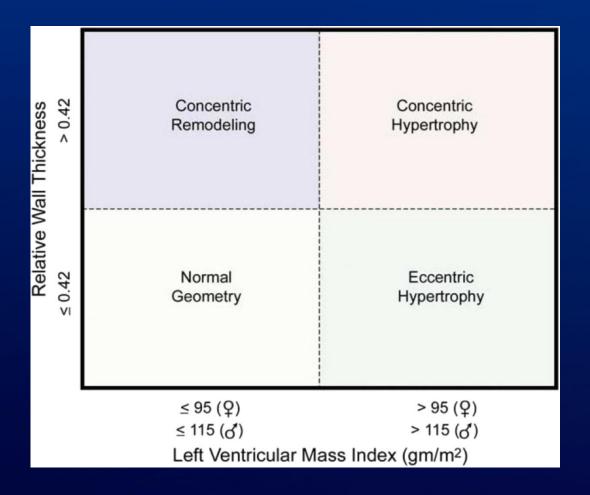
- Echocardiogram demonstrates enlarged left ventricle with global hypokinesis, LVEF 23%, Moderate mitral regurgitation
 - LVEDD 79mm

- LVESD 74 mm
- Septal wall 9 mm

- Posterior wall 9 mm
- LV Mass 121 gm/m2

Question

- Which best describes the remodeling of the left ventricle
- 1. Concentric remodelling
- 2. Normal geometry
- 3. Concentric hypertrophy
- 4. Eccentric hypertrophy


Interpretation of LV Mass

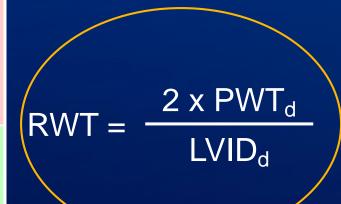
	Male			Female				
	Normal range	Mildly abnomal	Moderately abnormal	Severely abnormal	Normal range	Mildly abnormal	Moderately abnormal	Severely abnormal
LV mass by linear method								
Septal wall thickness (cm)	0.6-1.0	1.1-1.3	1.4-1.6	>1.6	0.6-0.9	1.0-1.2	1.3-1.5	>1.5
Posterior wall thickness (cm)	0.6-1.0	1.1-1.3	1.4-1.6	>1.6	0.6-0.9	1.0-1.2	1.3-1.5	>1.5
LV mass (g)	88-224	225-258	259-292	>292	67-162	163-186	187-210	>210
LV mass/BSA (g/m²)	49-115	116-131	132-148	>148	43-95	96-108	109-121	>121
LV mass by 2D method								
LV mass (g)	96-200	201-227	228-254	>254	66-150	151-171	172-193	>193
LV mass/BSA (g/m²)	50–102	103–116	117–130	>130	44–88	89–100	101–112	>112

Lang RM et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015;28:1-39.

Classification of LV Geometry

Lang RM et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015;28:1-39.

Relative Wall Thickness


Relative Wall Thickness (RWT) ≤ 0.42

> 0.42 Concentric Remodeling

Concentric Hypertrophy

Normal Geometry

Eccentric Hypertrophy

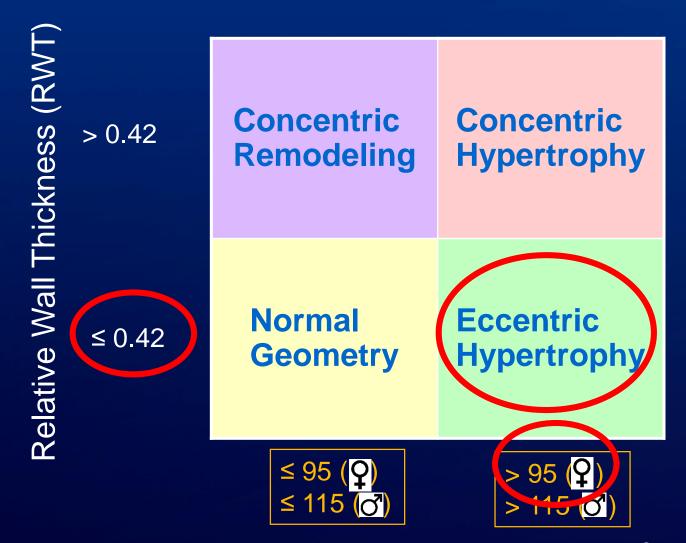
> 95 (\bigcap) > 115 (\bigcap)

Left Ventricular Mass Index (g/m²)

Question

Calculate relative wall thickness (RWT)

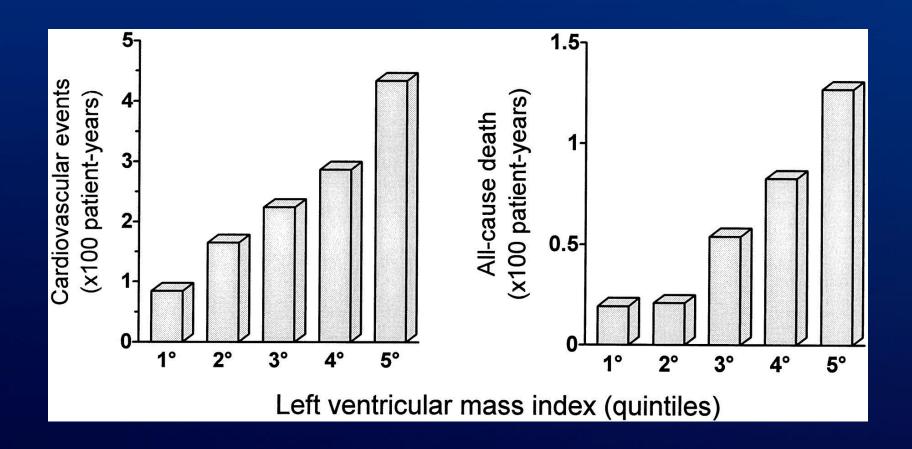
• RWT =
$$\frac{2 \times PWT_d}{LVID_d}$$


• RWT =
$$\frac{2 \times 9}{79}$$

•
$$RWT = 0.22$$

Plot on 2 by 2 table

Relative Wall Thickness


Left Ventricular Mass Index (g/m²)

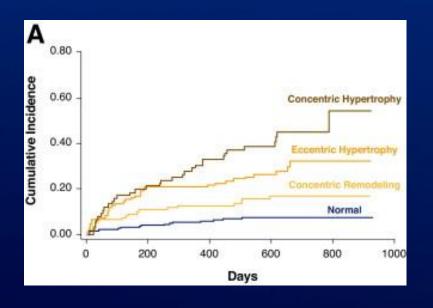
Question

- Which best describes the remodeling of the left ventricle
- 1. Concentric remodelling
- 2. Normal geometry
- 3. Concentric hypertrophy
- 4. Eccentric hypertrophy

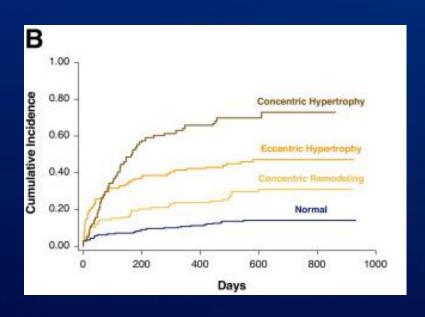
LV Mass: A Marker of Prognosis

Comprehensive characterisation of hypertensive heart disease left ventricular phenotypes

Jonathan C L Rodrigues, ^{1,2} Antonio Matteo Amadu, ^{1,3} Amardeep Ghosh Dastidar, ^{1,4} Gergley V Szantho, ^{1,5} Stephen M Lyen, ^{1,6} Cattleya Godsave, ⁷ Laura E K Ratcliffe, ⁸ Amy E Burchell, ^{4,8} Emma C Hart, ^{2,8} Mark C K Hamilton, ⁶ Angus K Nightingale, ^{4,8} Julian F R Paton, ^{2,8} Nathan E Manghat, ^{1,6} Chiara Bucciarelli-Ducci ^{1,4}


Heart 2016; **102**: 1671–1679.

Conclusions Myocardial interstitial fibrosis varies across hypertensive LV phenotypes with functional consequences. Eccentric LVH has the most fibrosis and systolic impairment. Concentric remodelling is only associated with abnormal aortic function. Understanding these differences may help tailor future antihypertensive treatments.



LV Geometry: Clinical Implications

All Cause Mortality

Cardiovascular Events

Verma A et al. Prognostic implications of left ventricular mass and geometry following myocardial infarction: the VALIANT (VALsartan In Acute myocardial iNfarcTion) Echocardiographic Study. JACC Cardiovasc Imaging 2008;1:582-91.

Questions & Discussion

